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LETTER TO THE EDITOR 

The growth equation of a multi-holes system in partial 
wetting 

Yoshihisa Enomoto 
Department of Physics, Faculty of Science, Nagoya University, Nagoya 464-01, Japan 

Received 5 December 1989 

Abstract. We study the dynamical behaviour of a multi-holes system in partial wetting. 
Applying the method recently developed by us to the problem, we derive for the first time 
the equation of motion of the contact lines, where the free surface of the wetting liquid meets 
the solid surface, in the presence of multi-holes. The equation obtained is found to take into 
account the cooperative effects generated by the spatial interactions among holes. 

Recently Sekimoto et al [ l ]  have developed a macroscopic static theory of the mor- 
phological stability of partial wetting [2]. The system they considered is the partial 
wetting of a non-volatile liquid on a solid surface that is rigid and microscopically flat. 
The free surface of the liquid meets the solid surface at the contact line at a certain 
contact angle. Sekimoto et al first derived an expression for the wetting energy involving 
the effect of gravity as a functional of the contact line. Using the free energy functional 
and the approximation of a nearly flat free surface of the liquid, they have found that 
there are at least two fundamental morphologies, which we call a hole and a ridge, which 
are thermodynamically unstable against certain infinitesimal deformations of the contact 
lines. The hole-type instability has also been found by Srolovitz and Safran [3] for the 
case of thin film rupture where the gravity effect is not so important. Moreover, they 
have discussed the dynamical behaviour of an array of holes. They have, however, only 
discussed an ideal system where holes are arranged with arbitrary, but uniform, initial 
size and spacing. 

In the present letter we thus consider a general situation where not only the positions 
of holes but also their initial radii are randomly distributed. By using a Green function 
method we obtain the growth equation of the multi-holes system of partial wetting. This 
method has been developed recently by us to discuss the growth equation of the three- 
dimensional Ostwald ripening [4] and the multi-nuclei system in a vacuum-deposited 
thin film [5]. 

Here we consider a system where the non-volatile liquid covers the whole solid 
surface, except for disc-shaped domains (called holes) where the solid is exposed. The 
geometry considered is shown in figure 1. In the following discussion, we assume that: 
(i) the total volume of the wetting liquid is conserved; (ii) the contact line of each hole 
is circular with radius Rj(t)  (1 S j S N ( t ) )  where N ( t )  is the number of holes at time t- 
moreover, its centre X,  is fixed-and (iii) the mean distances between holes are larger 
than their radii. (iv) The approximation of a nearly flat liquid surface is made, that is, 
IVf(r, t)l 4 1 wheref(r, t )  denotes the liquid height at the position r = ( x ,  y )  on the solid 
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Figure 1. The geometry of the jth hole considered here. 

surface, and (v) following Cox [6], the motion of the jth hole's contact line is assumed 
to be described by [7] 

(d/dt)R, = ~ ( 0 ,  - o,(w,, t ) )  (1) 
where s is a positive constant, Oe the equilibrium contact angle given by Young [SI, and 
0,( w,, t )  the contact angle at the position of the contact liner,( w,), given within assumption 
(iv) by 

O,(w,,  t )  = -tan-'(n,(w,) . V,f(r,, t)) = -n,(w,> v,f(r,, t) .  ( 2 )  
Here r,(w,) and wl are, respectively, the position and the corresponding angle variable 
on thejth hole's contact line, as is shown in figure 1. Moreover, V,f(r,,  t )  denotes Vf(r ,  t )  
evaluated at r = r,, and n,(w,) is the outward unit vector normal to thejth contact line. 
Note that, as can be seen later, the contact angle 0, is independent of wl because of 
assumption (iii) and thus the contact line remains circular during the time evolution. 

Under the above assumptions the liquid surface profilef(r, t) is obtained and used 
to solve the following equation with a Lagrange multiplef" [l] :  

(02 - L2)f(r, t) + L2f" = 0 ( 3 )  

f(r, 7 4 = 0 (4) 

f(r, t )  + d(t) for Irl+ x ( 5 )  

with boundary conditions 

where L-' = v / y / p g  is the capillary length with y being the surface energy of the free 
surface of the liquid, p the density of liquid and g the gravitational constant. Despite 
considering thin film rupture [3], the capillary length L-' and/or the gravity effect g has 
been found to be important in the partial wetting [ 11. Here d(t) denotes the liquid height 
far from holes and is determined later such that the total liquid volume is conserved. 

Equations (3)-(5) are formally analogous to those of [5] and can thus be solved by 
using the same two-dimensional Green function method. Thus, we shall quote only the 
final results omitting the intermediate calculations. Therefore, we obtain 
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c j ( w j )  = - d ( t ) A ( j )  - x A ( i ) G ( X i j )  I dwi c i ( w i )  
i+j  

= ( ~ o ( J w o ( J ) ) - l  (8) 

(9, Xi, = IXi - X,I 

where the argument J of the Bessel functions in equation (8) is defined by J = LRl and 
the two-dimensional Green function G(r)  satisfying (V2 - L2)G(r) = -d(r) is given by 

G(4  = (1/24Ko(Llrl). (10) 

Then, using (2), (6) and (7),  the contact angle 8,(t) is obtained from 

with 

To obtain these results, we have used the following approximations: 

G(r, - r , )  = G ( X J  

nl(wl) . VG(r  - rf) lr=r,  e n l ( w l )  * VG(r - r,’)lr=r,. 

(13) 

(14)  

These approximations may be allowed, because of assumption (iii). Here we remark 
that due to the above approximations 8, becomes independent of w,. The term 
8, - Ld( t )B( j j )  in ( 1 )  and (11) is a mean-field term which is analogous to that of [SI. On 
the other hand, the last term in ( 1 1 )  represents the spatial interactions among holes via 
the fieldf(r, t ) ,  which result in the statistical correlations beyond the mean-field theory. 
Such correlations have been found to play important roles in the dynamical behaviour 

Finally, the above equations must be supplemented with the conservation law of the 
[41. 

liquid volume: 

Sdo = Sd(t)  - V ,  (15) 

V ,  = (d( t )  - f ( r ,  t ) )  d 2 r  = n d ( t )  R: + (d ( t )  - f ( r ,  t ) )  
i II 

x n H(lr - X , /  - R,) d 2 r  (16) 
1 

where S is the solid surface area, d,  the uniform liquid height in the absence of holes, V ,  
the excluded volume due to holes, and H ( x )  the usual step function. As a result, we 
obtain the equation of motion (1) of the contact line with ( 1 1 )  and ( l S ) ,  which is a starting 
equation for studying the dynamical behaviour of the multi-holes system. 

These equations of motion are, however, still difficult to handle. A considerable 
simplification is obtained if L X ,  S LR, S 1. In this limiting case we have 

B( j j )  = 1 + 1/2LR1 

KO ( L X ,  1 = 0 

(17) 

(18) 
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V ,  = x d ( t )  2 Rf.  
i 

Then, after some algebraic calculations, equations ( l ) ,  (11)  and (15) reduce to 

(d/dt)R, = ( s d ( t ) / 2 ) ( A ( t ) / &  - l /Rj )  (20)  

A ( t )  + x 2 R j  = Q 
i 

with A ( t )  = Sd , ( l / d ( t )  - L / 8 , ) ,  a = S d o / 2 8 ,  and Q = S ( l  - L d o / 8 , ) .  These sim- 
plified equations are analogous to those of the mean-field theory of two-dimensional 
Ostwald ripening [ 9 ] ,  if Rj is regarded as the jth precipitate radius, Q as the total 
precipitate volume fraction and so on, except for the time-dependent kinetic coefficient 
sd( t )  in (20). Sekimoto has also pointed out such an analogy. 

To study the effects of the spatial interactions on the dynamical behaviour of the 
multi-holes system, we are currently performing molecular dynamics simulation of ( 1 )  
with (11) and (15)  directly. The results, together with a comparison between the present 
results and those of Srolovitz and Safran, will be published in the future. 

The author thanks Dr K Sekimoto for leading his interest to the problem of partial 
wetting. 
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